| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- # -*- coding: utf-8 -*-
- import re
- from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
- from fastapi import Query
- from app.core.validator import DateTimeStr
- from app.core.base_schema import BaseSchema
- class DictTypeCreateSchema(BaseModel):
- """
- 字典类型表对应pydantic模型
- """
- dict_name: str = Field(..., min_length=1, max_length=64, description='字典名称')
- dict_type: str = Field(..., min_length=1, max_length=100, description='字典类型')
- status: str = Field(default='0', description='状态(0正常 1停用)')
- description: str | None = Field(default=None, max_length=255, description="描述")
- @field_validator('dict_name')
- def validate_dict_name(cls, value: str):
- if not value or value.strip() == '':
- raise ValueError('字典名称不能为空')
- return value.strip()
- @field_validator('dict_type')
- def validate_dict_type(cls, value: str):
- if not value or value.strip() == '':
- raise ValueError('字典类型不能为空')
- regexp = r'^[a-z][a-z0-9_]*$'
- if not re.match(regexp, value):
- raise ValueError('字典类型必须以字母开头,且只能为(小写字母,数字,下滑线)')
- return value.strip()
- class DictTypeUpdateSchema(DictTypeCreateSchema):
- """字典类型更新模型"""
- ...
- class DictTypeOutSchema(DictTypeCreateSchema, BaseSchema):
- """字典类型响应模型"""
- model_config = ConfigDict(from_attributes=True)
- class DictTypeQueryParam:
- """字典类型查询参数"""
- def __init__(
- self,
- dict_name: str | None = Query(default=None, description="字典名称", max_length=100),
- dict_type: str | None = Query(default=None, description="字典类型", max_length=100),
- status: str | None = Query(default=None, description="状态(0正常 1停用)"),
- created_time: list[DateTimeStr] | None = Query(None, description="创建时间范围", examples=["2025-01-01 00:00:00", "2025-12-31 23:59:59"]),
- updated_time: list[DateTimeStr] | None = Query(None, description="更新时间范围", examples=["2025-01-01 00:00:00", "2025-12-31 23:59:59"]),
- ) -> None:
- super().__init__()
-
- # 模糊查询字段
- self.dict_name = ("like", f"%{dict_name.strip()}%") if dict_name and dict_name.strip() else None
-
- # 精确查询字段
- self.dict_type = dict_type.strip() if dict_type else None
- self.status = status
-
- # 时间范围查询
- if created_time and len(created_time) == 2:
- self.created_time = ("between", (created_time[0], created_time[1]))
- if updated_time and len(updated_time) == 2:
- self.updated_time = ("between", (updated_time[0], updated_time[1]))
- class DictDataCreateSchema(BaseModel):
- """
- 字典数据表对应pydantic模型
- """
- dict_sort: int = Field(..., ge=1, le=999, description='字典排序')
- dict_label: str = Field(..., max_length=100, description='字典标签')
- dict_value: str = Field(..., max_length=100, description='字典键值')
- dict_type: str = Field(..., max_length=100, description='字典类型')
- dict_type_id: int = Field(..., description='字典类型ID')
- css_class: str | None = Field(default=None, max_length=100, description='样式属性(其他样式扩展)')
- list_class: str | None = Field(default=None, description='表格回显样式')
- is_default: bool = Field(default=False, description='是否默认(True是 False否)')
- status: str = Field(default='0', description='状态(0正常 1停用)')
- description: str | None = Field(default=None, max_length=255, description="描述")
-
- @model_validator(mode='after')
- def validate_after(self):
- if not self.dict_label or not self.dict_label.strip():
- raise ValueError('字典标签不能为空')
- if not self.dict_value or not self.dict_value.strip():
- raise ValueError('字典键值不能为空')
- if not self.dict_type or not self.dict_type.strip():
- raise ValueError('字典类型不能为空')
- if not hasattr(self, 'dict_type_id') or self.dict_type_id <= 0:
- raise ValueError('字典类型ID不能为空且必须大于0')
-
- # 确保字符串字段被正确处理
- self.dict_label = self.dict_label.strip()
- self.dict_value = self.dict_value.strip()
- self.dict_type = self.dict_type.strip()
-
- return self
- class DictDataUpdateSchema(DictDataCreateSchema):
- """字典数据更新模型"""
- ...
- class DictDataOutSchema(DictDataCreateSchema, BaseSchema):
- """字典数据响应模型"""
- model_config = ConfigDict(from_attributes=True)
- class DictDataQueryParam:
- """字典数据查询参数"""
- def __init__(
- self,
- dict_label: str | None = Query(default=None, description="字典标签", max_length=100),
- dict_type: str | None = Query(default=None, description="字典类型", max_length=100),
- dict_type_id: int | None = Query(default=None, description="字典类型ID"),
- status: str | None = Query(default=None, description="状态(0正常 1停用)"),
- created_time: list[DateTimeStr] | None = Query(default=None, description="创建时间范围", examples=["2025-01-01 00:00:00", "2025-12-31 23:59:59"]),
- updated_time: list[DateTimeStr] | None = Query(default=None, description="更新时间范围", examples=["2025-01-01 00:00:00", "2025-12-31 23:59:59"]),
- ) -> None:
-
- # 模糊查询字段
- self.dict_label = ("like", f"%{dict_label.strip()}%") if dict_label and dict_label.strip() else None
-
- # 精确查询字段
- self.dict_type = dict_type.strip() if dict_type else None
- self.dict_type_id = dict_type_id
- self.status = status
-
- # 时间范围查询
- if created_time and len(created_time) == 2:
- self.created_time = ("between", (created_time[0], created_time[1]))
- if updated_time and len(updated_time) == 2:
- self.updated_time = ("between", (updated_time[0], updated_time[1]))
|